Πώς να μετρήσετε το ύψος ενός ουρανοξύστη με ένα βαρόμετρο.
Το κείμενο που ακολουθεί αφορά μια ερώτηση που ήταν θέμα σε εξετάσεις Φυσικής στο Πανεπιστήμιο της Κοπεγχάγης:
«Να περιγράψετε πώς μπορούμε να μετρήσουμε το ύψος ενός ουρανοξύστη χρησιμοποιώντας ένα βαρόμετρο».
Ένας φοιτητής απάντησε:
«Δένετε ένα μακρύ σπάγκο στο λαιμό του βαρόμετρου και στη συνέχεια κατεβάζετε το βαρόμετρο από την ταράτσα μέχρι να αγγίζει το έδαφος. Το ύψος του κτιρίου θα ισούται με το μήκος του νήματος συν το μήκος του βαρόμετρου».
Αυτή η πρωτότυπη απάντηση εξόργισε τόσο τον εξεταστή, ώστε αυτός έκοψε το φοιτητή στο συγκεκριμένο μάθημα. Ο φοιτητής προσέφυγε στις αρχές του Πανεπιστημίου, ισχυριζόμενος ότι η απάντησή του ήταν αναμφίβολα σωστή και ότι αδίκως κόπηκε.
Το Πανεπιστήμιο όρισε έναν άλλο εξεταστή να διερευνήσει το θέμα και να αποφασίσει εάν έπρεπε να κοπεί ο φοιτητής ή όχι. Ο κριτής αυτός θεώρησε ότι η απάντηση που δόθηκε ήταν πράγματι σωστή, αλλά δεν φανέρωνε καμία αξιοσημείωτη γνώση Φυσικής.
Για να διαλευκανθεί τελείως το θέμα, αποφασίστηκε να καλέσουν το φοιτητή και να του αφήσουν έξι λεπτά, μέσα στα οποία αυτός θα έπρεπε να δώσει μια προφορική απάντηση που να μην είναι τόσο απλοϊκή, αλλά να δείχνει κάποια εξοικείωση με τις βασικές αρχές της Φυσικής.
Για πέντε λεπτά ο φοιτητής έμενε σιωπηλός, βαθιά απορροφημένος στις σκέψεις του. Ο εξεταστής του θύμισε ότι ο χρόνος τελειώνει και ο φοιτητής απάντησε ότι είχε στο μυαλό του μερικές ιδιαίτερα σχετικές απαντήσεις, αλλά δε μπορούσε να αποφασίσει ποια να χρησιμοποιήσει. Στην προτροπή να βιαστεί, απάντησε ως εξής:
«Κατ’ αρχήν, θα μπορούσαμε να ανεβάσουμε το βαρόμετρο στην ταράτσα του ουρανοξύστη, να το αφήσουμε να πέσει και να μετρήσουμε το χρόνο που κάνει μέχρι να φτάσει στο έδαφος. Το ύψος του κτιρίου μπορεί να υπολογιστεί τότε από τον τύπο: H=(gt 2)/2. Όμως, δε θα το συνιστούσα γιατί θα ήταν κρίμα για το βαρόμετρο».
«Μια άλλη εναλλακτική απάντηση» είπε ο φοιτητής «είναι η εξής: Εάν υπάρχει ηλιοφάνεια, θα μπορούσαμε να μετρήσουμε το ύψος του βαρόμετρου, να το στήσουμε όρθιο στο έδαφος και μετά να μετρήσουμε του μήκος της σκιάς του. Στη συνέχεια μετρούμε το μήκος της σκιάς του ουρανοξύστη, και με απλό τρόπο μπορούμε να υπολογίσουμε το πραγματικό ύψος του ουρανοξύστη με αριθμητική αναλογία».
«Αλλά, εάν θα θέλατε να αντιμετωπίσετε το θέμα με ιδιαίτερα επιστημονικό τρόπο, θα μπορούσατε να δέσετε ένα μικρού μήκους νήμα στο βαρόμετρο και να το θέσετε σε ταλάντωση σαν εκκρεμές, πρώτα στο έδαφος και μετά στην ταράτσα του ουρανοξύστη. Το ύψος θα μπορούσε να βρεθεί μετρώντας και συγκρίνοντας τις δύο περιόδους, οι οποίες είναι αντιστρόφως ανάλογες των τετραγωνικών ριζών των επιταχύνσεων της βαρύτητας στο έδαφος και στο ύψος του ουρανοξύστη. Η επιτάχυνση της βαρύτητας εξαρτάται με τη σειρά της από το ύψος από την επιφάνεια της γης και συνεπώς γνωρίζοντας την επιτάχυνση της βαρύτητας στην ταράτσα βρίσκουμε το ζητούμενο ύψος».
«Α!» είπε πάλι ο φοιτητής, «Υπάρχει κι ένας άλλος τρόπος, όχι κακός: Αν ο ουρανοξύστης διαθέτει εξωτερική σκάλα κινδύνου, θα ήταν ευκολότερο να ανεβεί κανείς τη σκάλα βάζοντας διαδοχικά σημάδια επαναλαμβάνοντας το μήκος του βαρόμετρου. Μετά θα ήταν εύκολο να υπολογίσει το ύψος του ουρανοξύστη προσθέτοντας όλα αυτά τα μήκη. Αλλά, αν απλώς θα θέλατε να είστε ιδιαίτερα βαρετός δίνοντας μια ορθόδοξη απάντηση, θα μπορούσατε να μετρήσετε την ατμοσφαιρική πίεση στην ταράτσα και στο έδαφος και να μετατρέψετε τη διαφορά των millibars σε ανάλογη διαφορά σε μέτρα.»
«Όμως, επειδή ως φοιτητές παροτρυνόμαστε συνέχεια να ασκούμε την ανεξαρτησία του μυαλού μας και να εφαρμόζουμε επιστημονικές μεθόδους, αναμφίβολα ο καλύτερος τρόπος θα ήταν να χτυπήσουμε την πόρτα του θυρωρού και να του πούμε: Αν θα ήθελες να έχεις ένα ωραίο καινούριο βαρόμετρο, θα σου χαρίσω αυτό αν μου πεις το ύψος του ουρανοξύστη».
Ο φοιτητής ήταν ο Niels Bohr, ο μόνος Δανός που τιμήθηκε με το βραβείο Νόμπελ Φυσικής…